

pyramid-excel - Let you focus on data, instead of file formats

	Author:	C.W.

	Source code:	http://github.com/pyexcel/pyramid-excel.git

	Issues:	http://github.com/pyexcel/pyramid-excel/issues

	License:	New BSD License

	Released:	0.0.5

	Generated:	Jul 20, 2017

Here is a typical conversation between the developer and the user:

User: "I have uploaded an excel file"
 "but your application says un-supported file format"
Developer: "Did you upload an xlsx file or a csv file?"
User: "Well, I am not sure. I saved the data using "
 "Microsoft Excel. Surely, it must be in an excel format."
Developer: "OK. Here is the thing. I were not told to support"
 "all available excel formats in day 1. Live with it"
 "or delay the project x number of days."

pyramid-excel is based on pyexcel [https://github.com/pyexcel/pyexcel] and makes
it easy to consume/produce information stored in excel files over HTTP protocol as
well as on file system. This library can turn the excel data into a list of lists,
a list of records(dictionaries), dictionaries of lists. And vice versa. Hence it
lets you focus on data in Pyramid based web development, instead of file formats.

The idea originated from the common usability problem when developing an excel file
driven web applications for non-technical office workers: such as office assistant,
human resource administrator. The fact is that not all people know the
difference among various excel formats: csv, xls, xlsx. Instead of training those people
about file formats, this library helps web developers to handle most of the excel file
formats by providing a common programming interface. To add a specific excel file format
to you application, all you need is to install an extra pyexcel plugin. No code change
to your application. Looking at the community, this library and its associated ones try
to become a small and easy to install alternative to Pandas.

The highlighted features are:

	excel data import into and export from databases

	turn uploaded excel file directly into Python data structure

	pass Python data structures as an excel file download

	provide data persistence as an excel file in server side

	supports csv, tsv, csvz, tsvz by default and other formats are supported via
the following plugins:

A list of file formats supported by external plugins

	Package name
	Supported file formats
	Dependencies
	Python versions

	pyexcel-io [https://github.com/pyexcel/pyexcel-io]
	csv, csvz [1], tsv,
tsvz [2]
	
	2.6, 2.7, 3.3,
3.4, 3.5, 3.6
pypy

	pyexcel-xls [https://github.com/pyexcel/pyexcel-xls]
	xls, xlsx(read only),
xlsm(read only)
	xlrd [https://github.com/python-excel/xlrd],
xlwt [https://github.com/python-excel/xlwt]
	same as above

	pyexcel-xlsx [https://github.com/pyexcel/pyexcel-xlsx]
	xlsx
	openpyxl [https://bitbucket.org/openpyxl/openpyxl]
	same as above

	pyexcel-xlsxw [https://github.com/pyexcel/pyexcel-xlsxw]
	xlsx(write only)
	XlsxWriter [https://github.com/jmcnamara/XlsxWriter]
	same as above

	pyexcel-ods3 [https://github.com/pyexcel/pyexcel-ods3]
	ods
	ezodf [https://github.com/T0ha/ezodf],
lxml
	2.6, 2.7, 3.3, 3.4
3.5, 3.6

	pyexcel-ods [https://github.com/pyexcel/pyexcel-ods]
	ods
	odfpy [https://github.com/eea/odfpy]
	same as above

	pyexcel-odsr [https://github.com/pyexcel/pyexcel-odsr]
	ods(read only)
	lxml
	same as above

	pyexcel-text [https://github.com/pyexcel/pyexcel-text]
	(write only)json, rst,
mediawiki, html,
latex, grid, pipe,
orgtbl, plain simple
	tabulate [https://bitbucket.org/astanin/python-tabulate]
	2.6, 2.7, 3.3, 3.4
3.5, 3.6, pypy

	pyexcel-handsontable [https://github.com/pyexcel/pyexcel-handsontable]
	handsontable in html
	handsontable [https://cdnjs.com/libraries/handsontable]
	same as above

	pyexcel-pygal [https://github.com/pyexcel/pyexcel-chart]
	svg chart
	pygal [https://github.com/Kozea/pygal]
	2.7, 3.3, 3.4, 3.5
3.6, pypy

	pyexcel-sortable [https://github.com/pyexcel/pyexcel-sortable]
	sortable table in html
	csvtotable [https://github.com/vividvilla/csvtotable]
	same as above

	pyexcel-gantt [https://github.com/pyexcel/pyexcel-gantt]
	gantt chart in html
	frappe-gantt [https://github.com/frappe/gantt]
	except pypy, same
as above

In order to manage the list of plugins installed, you need to use pip to add or remove
a plugin. When you use virtualenv, you can have different plugins per virtual
environment. In the situation where you have multiple plugins that does the same thing
in your environment, you need to tell pyexcel which plugin to use per function call.
For example, pyexcel-ods and pyexcel-odsr, and you want to get_array to use pyexcel-odsr.
You need to append get_array(..., library=’pyexcel-odsr’).

Footnotes

	[1]	zipped csv file

	[2]	zipped tsv file

This library makes information processing involving various excel files as easy as
processing array, dictionary when processing file upload/download, data import into
and export from SQL databases, information analysis and persistence. It uses
pyexcel and its plugins:

	to provide one uniform programming interface to handle csv, tsv, xls, xlsx, xlsm and ods formats.

	to provide one-stop utility to import the data in uploaded file into a database and to export tables in a database as excel files for file download.

	to provide the same interface for information persistence at server side: saving a uploaded excel file to and loading a saved excel file from file system.

Installation

You can install it via pip:

$ pip install pyramid-excel

or clone it and install it:

$ git clone https://github.com/pyexcel/pyramid-excel.git
$ cd pyramid-excel
$ python setup.py install

Installation of individual plugins , please refer to individual plugin page. For example, if you need xls file support, please install pyexcel-xls:

$ pip install pyexcel-xls

Setup

Once the pyramid_excel is installed, you must use the config.include mechanism to include it into your Pyramid project’s configuration:

config = Configurator(.....)
config.include('pyramid_excel')

Alternately, you may activate the extension by changing your application’s .ini file by
adding it to the pyramid.includes list:

pyramid.includes = pyramid_excel

Quick Start

Here is the quick demonstration code for pyramid-excel:

from wsgiref.simple_server import make_server
from pyramid.config import Configurator
from pyramid.response import Response
from pyramid.view import view_config
import pyramid_excel as excel

upload_form = """
<!doctype html>
<title>Upload an excel file</title>
<h1>Excel file upload</h1>
<form action="" method=post enctype=multipart/form-data><p>
<input type=file name=file><input type=submit value=Upload>
</form>
"""

@view_config(route_name='upload')
def upload_view(request):
 if request.method == 'POST':
 data = request.get_array(field_name='file')
 return excel.make_response_from_array(data, 'xls', file_name="response")
 return Response(upload_form)

if __name__ == '__main__':
 config = Configurator()
 config.include('pyramid_excel')
 config.add_route('upload', '/upload')
 config.scan()
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 5000, app)
 print("Listening on 0.0.0.0:5000")
 server.serve_forever()

Before you start the server, let’s install a plugin to support xls file format:

$ pip install pyexcel-xls

And you can start the tiny server by this command, assuming you have save it as tiny_server.py:

$ python tiny_server.py
Listening on 0.0.0.0:5000

Note

Alternatively, you can check out the code from github [https://github.com/pyexcel/pyramid-excel]

git clone https://github.com/pyexcel/pyramid-excel.git

The test application for pyramid-excel is a fully fledged site according to the tutorial here.

Once you have the code, please change to pyramid-excel directory and then install all dependencies:

$ cd pyramid-excel
$ pip install -r requirements.txt
$ pip install -r test_requirements.txt

Then run the test application:

$ pserve development.ini
Starting server in PID 9852.
serving on http://127.0.0.1:5000

Support the project

If your company has embedded pyexcel and its components into a revenue generating
product, please support me on patreon [https://www.patreon.com/bePatron?u=5537627] to
maintain the project and develop it further.

If you are an individual, you are welcome to support me too on patreon and for however long
you feel like to. As a patreon, you will receive
early access to pyexcel related contents [https://www.patreon.com/pyexcel/posts].

With your financial support, I will be able to invest
a little bit more time in coding, documentation and writing interesting posts.

More excel file formats

The example application understands csv, tsv and its zipped variants: csvz and tsvz. If you would like to expand the list of supported excel file formats (see A list of file formats supported by external plugins) for your own application, you could install one or all of the following:

pip install pyexcel-xls
pip install pyexcel-xlsx
pip install pyexcel-ods

Warning

If you are using pyexcel <=0.2.1, you still need to import each plugin manually, e.g. import pyexcel.ext.xls and
Your IDE or pyflakes may highlight it as un-used but it is used. The registration of
the extra file format support happens when the import action is performed

Handle excel file upload and download

This example shows how to process uploaded excel file and how to make data download as an excel file.
Open your browser and visit http://localhost:5000/upload, you shall see this upload form:

[image: _images/upload-form.png]
please upload an xls file and you would get this dialog:

[image: _images/download-dialog.png]
Please focus on the following code section:

@view_config(route_name='upload')
def upload_view(request):
 if request.method == 'POST':
 data = request.get_array(field_name='file')
 return excel.make_response_from_array(data, 'xls')
 return Response(upload_form)

By default, the GET request will be served with upload_form. Once an excel file is uploaded,
this library kicks in and help you get the data as an array. Then you can make an excel
file as download by using make_response_from_array.

Data import and export

Continue with the previous example, the data import and export will be explained. You can copy
the following code in their own appearing sequence and paste them after the place holder:

insert database related code here

Alernatively, you can find the complete example on github [https://github.com/pyexcel/pyramid-excel/blob/master/examples/database_example.py]

Now let’s add the following imports first:

from sqlalchemy import (
 Column,
 Index,
 Integer,
 Text,
 String,
 ForeignKey,
 DateTime,
 create_engine
)

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship, backref
from sqlalchemy.orm import (
 scoped_session,
 sessionmaker,
)

from zope.sqlalchemy import ZopeTransactionExtension

DBSession = scoped_session(sessionmaker(extension=ZopeTransactionExtension()))
Base = declarative_base()

And paste some models:

class Post(Base):
 __tablename__ = 'post'
 id = Column(Integer, primary_key=True)
 title = Column(String(80))
 body = Column(Text)
 pub_date = Column(DateTime)

 category_id = Column(Integer, ForeignKey('category.id'))
 category = relationship('Category',
 backref=backref('posts', lazy='dynamic'))

 def __init__(self, title, body, category, pub_date=None):
 self.title = title
 self.body = body
 if pub_date is None:
 pub_date = datetime.utcnow()
 self.pub_date = pub_date
 self.category = category

 def __repr__(self):
 return '<Post %r>' % self.title

class Category(Base):
 __tablename__ = 'category'
 id = Column(Integer, primary_key=True)
 name = Column(String(50))

 def __init__(self, name):
 self.name = name

 def __repr__(self):
 return '<Category %r>' % self.name

Now let us create the tables in the database:

def init_db():
 engine = create_engine('sqlite:///tmp.db')
 DBSession.configure(bind=engine)
 Base.metadata.drop_all(engine)
 Base.metadata.create_all(engine)

And make sure we call init_db in main:

if __name__ == '__main__':
 config = Configurator()
 config.include('pyramid_excel')
 config.add_route('upload', '/upload')
 config.add_route('import', '/import')
 config.add_route('export', '/export')
 config.scan()
 init_db() # <-------
 app = config.make_wsgi_app()
 server = make_server('0.0.0.0', 5000, app)
 print("Listening on 0.0.0.0:5000")
 server.serve_forever()

Write up the view functions for data import:

@view_config(route_name="import")
def doimport(request):
 if request.method == 'POST':
 def category_init_func(row):
 c = Category(row['name'])
 c.id = row['id']
 return c
 def post_init_func(row):
 c = DBSession.query(Category).filter_by(name=row['category']).first()
 p = Post(row['title'], row['body'], c, row['pub_date'])
 return p
 request.save_book_to_database(field_name='file', session=DBSession,
 tables=[Category, Post],
 initializers=[category_init_func, post_init_func])
 return Response("Saved")
 return Response(upload_form)

Write up the view function for data export:

@view_config(route_name="export")
def doexport(request):
 return excel.make_response_from_tables(DBSession, [Category, Post], "xls")

Then run the example again. Visit http://localhost:5000/import and upload sample-data.xls [https://github.com/pyexcel/pyramid-excel/blob/master/sample-data.xls] . Then visit http://localhost:5000/export to download the data back.

Export filtered query sets

Previous example shows you how to dump one or more tables over http protocol. Hereby, let’s look at how to turn a query sets into an excel sheet. You can
pass a query sets and an array of selected column names to make_response_from_query_sets() and generate an excel sheet from it:

@view_config(route_name="custom_export")
def docustomexport(request):
 query_sets = DBSession.query(Category).filter_by(id=1).all()
 column_names = ['id', 'name']
 return excel.make_response_from_query_sets(query_sets, column_names, "xls")

Then visit http://localhost:5000/custom_export to download the data
.. _data-types-and-its-conversion-funcs:

All supported data types

The example application likes to have array but it is not just about arrays. Here is table of functions for all supported data types:

	data structure
	from file to data structures
	from data structures to response

	dict
	get_dict()
	make_response_from_dict()

	records
	get_records()
	make_response_from_records()

	a list of lists
	get_array()
	make_response_from_array()

	dict of a list of lists
	get_book_dict()
	make_response_from_book_dict()

	pyexcel.Sheet [http://pyexcel.readthedocs.io/en/latest/generated/pyexcel.Sheet.html#pyexcel.Sheet]
	get_sheet()
	make_response()

	pyexcel.Book [http://pyexcel.readthedocs.io/en/latest/generated/pyexcel.Book.html#pyexcel.Book]
	get_book()
	make_response()

	database table
	save_to_database()
	make_response_from_a_table()

	a list of database tables
	save_book_to_database()
	make_response_from_tables()

	a database query sets
	
	make_response_from_query_sets()

See more examples of the data structures in pyexcel documentation [http://pyexcel.readthedocs.io/en/latest/design.html#a-list-of-data-structures]

API Reference

pyramid-excel attaches pyexcel functions to pyramid’s Request class.

	
pyramid_excel.ExcelRequestFactory.get_sheet(field_name=None, sheet_name=None, **keywords)

	

	Parameters:	
	field_name – the file field name in the html form for file upload

	sheet_name – For an excel book, there could be multiple sheets. If it is left
unspecified, the sheet at index 0 is loaded. For ‘csv’, ‘tsv’ file,
sheet_name should be None anyway.

	keywords – additional keywords to pyexcel.get_sheet()

	Returns:	A sheet object

	
pyramid_excel.ExcelRequestFactory.get_array(field_name=None, sheet_name=None, **keywords)

	

	Parameters:	
	field_name – same as get_sheet()

	sheet_name – same as get_sheet()

	keywords – additional keywords to pyexcel library

	Returns:	a two dimensional array, a list of lists

	
pyramid_excel.ExcelRequestFactory.get_dict(field_name=None, sheet_name=None, name_columns_by_row=0, **keywords)

	

	Parameters:	
	field_name – same as get_sheet()

	sheet_name – same as get_sheet()

	name_columns_by_row – uses the first row of the sheet to be column headers by default.

	keywords – additional keywords to pyexcel library

	Returns:	a dictionary of the file content

	
pyramid_excel.ExcelRequestFactory.get_records(field_name=None, sheet_name=None, name_columns_by_row=0, **keywords)

	

	Parameters:	
	field_name – same as get_sheet()

	sheet_name – same as get_sheet()

	name_columns_by_row – uses the first row of the sheet to be record field names by default.

	keywords – additional keywords to pyexcel library

	Returns:	a list of dictionary of the file content

	
pyramid_excel.ExcelRequestFactory.get_book(field_name=None, **keywords)

	

	Parameters:	
	field_name – same as get_sheet()

	sheet_name – same as get_sheet()

	keywords – additional keywords to pyexcel library

	Returns:	a two dimensional array, a list of lists

	
pyramid_excel.ExcelRequestFactory.get_book_dict(field_name=None, **keywords)

	

	Parameters:	
	field_name – same as get_sheet()

	sheet_name – same as get_sheet()

	keywords – additional keywords to pyexcel library

	Returns:	a two dimensional array, a list of lists

	
pyramid_excel.ExcelRequestFactory.save_to_database(field_name=None, session=None, table=None, initializer=None, mapdict=None **keywords)

	

	Parameters:	
	field_name – same as get_sheet()

	session – a SQLAlchemy session

	table – a database table

	initializer – a custom table initialization function if you have one

	mapdict – the explicit table column names if your excel data do not have the exact column names

	keywords – additional keywords to pyexcel.Sheet.save_to_database() [http://pyexcel.readthedocs.io/en/latest/generated/pyexcel.Sheet.save_to_database.html#pyexcel.Sheet.save_to_database]

	
pyramid_excel.ExcelRequestFactory.save_book_to_database(field_name=None, session=None, tables=None, initializers=None, mapdicts=None, **keywords)

	

	Parameters:	
	field_name – same as get_sheet()

	session – a SQLAlchemy session

	tables – a list of database tables

	initializers – a list of model initialization functions.

	mapdicts – a list of explicit table column names if your excel data sheets do not have the exact column names

	keywords – additional keywords to pyexcel.Book.save_to_database() [http://pyexcel.readthedocs.io/en/latest/generated/pyexcel.Book.save_to_database.html#pyexcel.Book.save_to_database]

	
pyramid_excel.make_response(pyexcel_instance, file_type, status=200, file_name=None)

	

	Parameters:	
	pyexcel_instance – pyexcel.Sheet [http://pyexcel.readthedocs.io/en/latest/generated/pyexcel.Sheet.html#pyexcel.Sheet] or pyexcel.Book [http://pyexcel.readthedocs.io/en/latest/generated/pyexcel.Book.html#pyexcel.Book]

	file_type – one of the following strings:

	‘csv’

	‘tsv’

	‘csvz’

	‘tsvz’

	‘xls’

	‘xlsx’

	‘xlsm’

	‘ods’

	status – unless a different status is to be returned.

	file_name – provide a custom file name for the response, excluding the file extension

	
pyramid_excel.make_response_from_array(array, file_type, status=200, file_name=None)

	

	Parameters:	
	array – a list of lists

	file_type – same as make_response()

	status – same as make_response()

	file_name – same as make_response()

	
pyramid_excel.make_response_from_dict(dict, file_type, status=200, file_name=None)

	

	Parameters:	
	dict – a dictinary of lists

	file_type – same as make_response()

	status – same as make_response()

	file_name – same as make_response()

	
pyramid_excel.make_response_from_records(records, file_type, status=200, file_name=None)

	

	Parameters:	
	records – a list of dictionaries

	file_type – same as make_response()

	status – same as make_response()

	file_name – same as make_response()

	
pyramid_excel.make_response_from_book_dict(book_dict, file_type, status=200, file_name=None)

	

	Parameters:	
	book_dict – a dictionary of two dimensional arrays

	file_type – same as make_response()

	status – same as make_response()

	file_name – same as make_response()

	
pyramid_excel.make_response_from_a_table(model, file_type status=200, file_name=None)

	Produce a single sheet Excel book of file_type

	Parameters:	
	session – SQLAlchemy session

	table – a SQLAlchemy table

	file_type – same as make_response()

	status – same as make_response()

	file_name – same as make_response()

	
pyramid_excel.make_response_from_query_sets(query_sets, column_names, file_type status=200, file_name=None)

	Produce a single sheet Excel book of file_type from your custom database queries

	Parameters:	
	query_sets – a query set

	column_names – a nominated column names. It could not be None, otherwise no data is returned.

	file_type – same as make_response()

	status – same as make_response()

	file_name – same as make_response()

	
pyramid_excel.make_response_from_tables(session, tables, file_type status=200, file_name=None)

	Produce a multiple sheet Excel book of file_type. It becomes the same
as make_response_from_a_table() if you pass tables
with an array that has a single table

	Parameters:	
	session – SQLAlchemy session

	tables – SQLAlchemy tables

	file_type – same as make_response()

	status – same as make_response()

	file_name – same as make_response()

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyramid_excel	

 	
 	
 pyramid_excel.ExcelRequestFactory	

Index

 G
 | M
 | P
 | S

G

 	
 	get_array() (in module pyramid_excel.ExcelRequestFactory)

 	get_book() (in module pyramid_excel.ExcelRequestFactory)

 	get_book_dict() (in module pyramid_excel.ExcelRequestFactory)

 	
 	get_dict() (in module pyramid_excel.ExcelRequestFactory)

 	get_records() (in module pyramid_excel.ExcelRequestFactory)

 	get_sheet() (in module pyramid_excel.ExcelRequestFactory)

M

 	
 	make_response() (in module pyramid_excel)

 	make_response_from_a_table() (in module pyramid_excel)

 	make_response_from_array() (in module pyramid_excel)

 	make_response_from_book_dict() (in module pyramid_excel)

 	
 	make_response_from_dict() (in module pyramid_excel)

 	make_response_from_query_sets() (in module pyramid_excel)

 	make_response_from_records() (in module pyramid_excel)

 	make_response_from_tables() (in module pyramid_excel)

P

 	
 	pyramid_excel (module)

 	
 	pyramid_excel.ExcelRequestFactory (module)

S

 	
 	save_book_to_database() (in module pyramid_excel.ExcelRequestFactory)

 	
 	save_to_database() (in module pyramid_excel.ExcelRequestFactory)

 _static/download-dialog.png
Opening upload
You have chosen to open:

E upload
which is: Microsoft Excel 97-2003 Worksheet (5.5 kB)
from: hitp://127.00.1:5000

What should Firefox do with this file?
Open with | OpenOffice Calc (default) v

SaveFile

7 Do this automaicallyfo ile ke thisfrom now on.

oK Cancel

nav.xhtml

 Table of Contents

 		pyramid-excel - Let you focus on data, instead of file formats

_images/upload-form.png
/ Upload an excel ile x \

@ 127.00.1:5000/upload

Excel file upload

Browse_ | Nofie selected.

Upload

_static/file.png

_images/download-dialog.png
Opening upload
You have chosen to open:

E upload
which is: Microsoft Excel 97-2003 Worksheet (5.5 kB)
from: hitp://127.00.1:5000

What should Firefox do with this file?
Open with | OpenOffice Calc (default) v

SaveFile

7 Do this automaicallyfo ile ke thisfrom now on.

oK Cancel

_static/upload-form.png
/ Upload an excel ile x \

@ 127.00.1:5000/upload

Excel file upload

Browse_ | Nofie selected.

Upload

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

